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Integrable spin-; XXZ Heisenberg chain with competing 
interactions 
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lnstitut f i r  Theoretische Physik, Universitat Hannover, D-3000 Hannover 1, Federal 
Republic of Germany 

Received 27 September 1991 

Abstrnd. The critical behaviour of an integrable model of a spin? chain with nearest- 
neighbour XXZ interaction and a competing three-spin interaction involving nearest and 
next-nearest neighbours is studied. The phase diagram at zero temperature is obtained. 
Methods from conformal field theory are used to compute the asymptotics ofthe spin-spin 
correlation functions. 

1. Introduction 

The investigation of exactly solvable models for one-dimensional classical and quantum 
spin systems has provided the basis for the understanding of the characteristic 
phenomena occurring in real quasi-one-dimensional magnets. Most of these models 
describe systems with nearest-neighbour interactions only. An additional interaction 
involving next-nearest neighbours would allow for the study of the effects of competing 
interactions such as frustration in these systems. A system that should show such 
behaviour is given by the following Hamiltonian: 

For J2=0  this model is known to he integrable by Bethe ansatz methods for S=! 
operators S" [1 -3 ] .  However, since this is a singular property of a Hamiltonian the 
integrability of the system is destroyed by adding the term proportional to .I2, Neverthe- 
less, a few analytical [4, 51 and numerical [6] results exist for the quantum system, 
giving some insight into the properties of this model: depending on A the system is in 
a gapless spin fluid phase (la[< 1) or an antiferromagnetically ordered N6el phase 
(A> I )  for sufficiently small values of J J J , .  For ratios of the exchange couplings 
greater than some critical value J ,  (J,-O.3 for A = 1) the ground state of the system 
shows dimer order with a gap for magnon excitations. It remains antiferromagnetically 
ordered. However, the dominant contribution to the spin-spin correlation function is 
found at wavenumber 9 < ?r for large J 2 .  This situation is .quite different from the 
helical phase found in the classical model for J 2 / J l > a  ( A =  1) [7]. 

Recently, Tsvelik has used the quantum inverse scattering method (QISM) to con- 
struct a spin-f model that contains a nearest-neighbour Heisenberg exchange term and 
a competing interaction involving nearest and next-nearest neighbours [8]. Since the 
relative strength of the Heisenberg coupling and this additional interaction (which will 
also be denoted by J2) can be varied without destroying the integrability, this model 
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provides a tool to study the effects of competing interactions in much more detail than 
possible in model (1). Tsvelik has solved this model for certain discrete values of the 
XXZ anisotropy A > O  where the Bethe ansatz simplifies and obtains a qualitative 
picture of the phase diagram. His basic result is that again there is a phase transition 
at some critical value of J2. However, for J2> J,  the system is not in a massive dimer 
phase as found for (1) but in a gapless phase with one (two) types of massless magnon 
excitations for A >  1 ( O < A <  1). The ground state carries a finite momentum. The 
ground siate has magnetization A = 0 for 0 i h < i exhibiting iong-range antiferromag- 
netic correlations with wavenumber T for J2 < J,  and in addition at wavenumber 2 < r 
(i.e. incommensurate with the underlying lattice) for J2< I,. It has finite A for A < 1 
and J2 > J,  with oscillating spin correlations. 

In this paper Tsvelik's analysis is extended to arbitrary A >  -1 and J 2 .  The phase 
boundary is determined and methods from conformal field theory are applied to 
compute the critical exponents of the model in its critical phasest. In the antiferromag- 
netic phase at J2<  Jc and in the phase 1A1> 1 ,  J2>  J,  the universality class is that of 
the Gaussian model or Coulomb gas-characterized by a Virasoro central charge c = 1. 
In the antiferromagnetic phase with J 2 >  J ,  the critical theory is given as a product of 
two Gaussian models, one for each of the two massless magnon excitations. This 
situation is very similar to that found in certain integrable spin chains with S>f  [9, 
101 and in models of interacting electrons in one spatial dimension [ll-131. 

The paper is organized as follows. First, a brief review of the construction of the 
model in the QISM is given and the Bethe ansatz equations that determine the spectrum 
are written down. Using results from the analysis of the XXZ Heisenberg model [ 1-31 
the critical value of the three-spin coupling is determined for arbitrary A >  -1 and 
positive J2. The characteristics of the various phases are discussed and correlation 
functions are calculated. 

1 
isin y 

- -- 

2. Construction of the integrable model 

The QISM [I41 provides the framework for the construction of integrable models. 
Central to this construction is the R-matrix which satisfies a Yang-Baxter equation. 
The R-matrix for the six-vertex model and the related XXZ Heisenberg model is an 
operator that acts in the product space of two spin-; operators S and L: 
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T,(A) = R , ( A ) R 2 ( A ) .  . . R ~ ( A ) .  (3) 

Here Rj is given by (2) with S" replaced with Sp and the product is taken in the 
auxiliary space of the operators L. The transfer matrix t,(A)=trace T,(A) satisfies 
[tL(A), rL( p ) ]  = 0 and can therefore be considered as a generator for a complete set of 
commuting operators in the Hilbert space of a spin-f chain of length L. From the 
properties of R it follows that tL(A = i) is a shift operator, i.e. it shifts a given spin 
configuration to the left by one site. This suggests a definition of 9 a i l n  t(A=i) as 
the momentum operator of this spin system. The following coefficients of the expansion 
of In t(h) can be identified as Hamiltonian, etc. The first derivative yields the familiar 
Heisenberg Hamiltonian with XXZ anisotropyt: 

The next integral in this series is found to be 

L 

j = 1  
= - x sj. @,+I X $ + J  for A =  1. ( 5 )  

Note that [Xxxz, g2]  = 0 by construction. Hence the operator 

X= JlZxxZ + J2Q2 (6) 
is integrable by Bethe ansatz methods for arbitrary values of J 2 / J I .  (In the following 
I shall set I ,  = 1). 

The algebraic Bethe ansatz can be used to study the spectrum of these models. The 
eigenstates of the transfer matrix f L ( A )  with magnetization ( X j  S;) = i L  - M are charac- 
terized by a set of M rapidities Aj that have to be chosen such that they satisfy the 
so-called Bethe ansatz equations 

L sin&i(Aj+i) sfhiy(Aj-Ak+2i) ) = siniy(Aj -i) k + j  sinh i y ( A j  - A k  -2i)' 

For the energy of the system (6) corresponding to this solution one finds 

sin' y 

j = ,  cosh yAj-c0s y 

(7) 

2. Phase diagram at T =O 

2.1. -1 <A=cos  y < l  

The properties of this model for J2 = 0 have been studied in detail by Takahashi and 
Suzuki [3]. The solutions of the Bethe ansatz equations (7) are known to be arranged 

t l n  [XI a different normalization of the integrals of motion is chosen: instead of (4) the operator 
(y/sin y).?txz is studied. The same difference in the definition of the integral 9, leads lo an additional 
factor in the amplitude of the three-spin interaction in [SI. 
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in so-called strings-bound states of uniformly spaced complex rapidities with the 
same real part: 

j = 1, . . . , n. (9) ) ( 2Y 

T 
A:: =Ap)+i  n + l - 2 j + - ( 1  -U") 

As shown by Takahashi and Suzuki the allowed values of the string lengths n and 
parities U. for real y have to satisfy 

sin y (  n - j )  sin yj  
sin2 y 

> O  f o r j = l , . .  . , n - 1 .  0" 

(Note that n = I-strings of either parity are allowed.) 
In the thermodynamic limit L + m  the eigenstates of the system are described by 

a set of coupled integral equations-one for each allowed string configuration. Fortu- 
nately, the analysis of Takahashi and Suzuki shows that most of them have zero 
energy-their role is mainly to ensure proper counting of the states. In particular, it 
follows from [3] that at T=O at most I-strings of parity +1 can be present in the 
ground state configuration. 

This allows for the description of the ground state in terms of the energies of these 
two types of excitations only. They are given in terms of the set of integral equations 
.[31 

E + ( A ) = E Y ) ( A ) - [  Ai-' * d p r + ( h - d E + ( p ) + \  Ai-' d p T - ( ~ - d e - ( p )  
A,+, A'*' 

where the bare energies of the 1-strings with positive and negative parity are found 
from (8) and (9) to be 

sin2 y 

and the phase shift functions are obtained from the Bethe ansatz equations (7) 

y sin 2 y  
T+(A)=*2a (cosh y A j ~ c o s  2 y ) '  

The integrations in (11) have to be performed over the intervals where E* are negative; 
the boundaries are fixed by the condition &+(AY))=O (and similarly for A?'). By 
Fourier transformation the kernel in (11) can be inverted so that the integration runs 
over intervals with positive E + .  This procedure leads to the integral equations studied 
by Tsvelik for y =  a / n  with n = 2 , 3 , .  . . [8]. From these equations one finds that for 
arbitrary values of J2 

& _ ( A ) S O  V h  i.e. A!?) = +m forA>O 

& + ( A )  < 0 VA i.e. AY' = +m for A < 0. 

Hence, one of the unknown functions E* can be eliminated from (11) 
For A >  0 the resulting equation is 
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where f+ and K ,  are given in terms of their Fourier transforms as 

E -  is given in terms of the solution of (14) as 

with 

(17) 
1 cosh o 

K - ( o )  = 
cosh (n/ y - 1)o cosh ( n / y  - l ) ~  . 

For A < O  one can eliminate E+ from the integral equations and obtain 

with 

cosh ( n / y - 2 ) w  cosh ( n / y - 3 ) w  
cosh(n /y- l )o  

E - ( @ )  = 
cosh w g-(w) = 

cosh (n/  y -  1)o  E+(o) = 
1 

g+(w)  = - 2 cosh o cosh o 

For the Heisenberg Hamiltonian (J2  = 0) and sufficiently small values of the three- 
spin coupling, it is known from Takahashi and Suzuki that only 1-strings of positive 
parity have negative energy, and without an external magnetic field one has AY1 = i m .  
Hence, the energies of the positive-parity 1-strings are found to be 

1 

and the dispersion relation of negative-parity 1-strings is 

& - ( A ) = O  
n 

for y < -  
2 

-cos n 2 / 2 y  cosh n A / 2  Tr 

Y 2 
fory>-. (20)  

These results hold as long as &+(AIS0 and E + ( A ) ~ = O  for all real A. The value of J2 

where either of these conditions is violated defines the critical value of the three-spin 
coupling. From (19 )  we find an upper limit for J,, 

2Y J,=-  
n sin y 

where 1-strings with zero energy appear at finite A,  For 3 n / S  < y <  n the critical value 
of J2 is defined by the occurrence of negative-panty strings with zero energy (20):  

Tr2 

ns in  y y ( 3 - Z ) 3 '  2Y 
J c = -  4Y sin"J-'l Z 2 =  1 + 4  cos2-. 
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Near y = 3 7 r / 5 ,  J ,  from (21) and (22) vanes continuously and J c ( y + 7 r ) =  1 (broken 
line in Figure 1). 

The nature of the new phase with J2> J ,  is easily understood by considering the 
point A = O  (where the XXZ model reduces to a system of free fermions). The 
one-particle dispersion can be found to be 

~ ( p ) = c o s p f & s i n 2 p .  (23) 
In the ground state the negative-energy states 

71 37r 
-<p<-  for J2<  I,= 1 
2 2 

a 7r - - < p < - - i 2  
2 2 

7r 37r 
2 2 
- < p < - - 2  for J2> 1 

with 2 =cos-' I/J2 are filled, allowing for low-lying excitations near the Fermi points 
at +7r/2 and -7r/2*2, giving two branches of left- and right-moving magnons each. 

In addition to the computation of the dispersion of magnon excitations the Bethe 
ansatz provides information on the density of states. As shown by Tsvelik [8] the 
system has finite momentum in its ground state for J2>  J,. The magnetization is zero 
for all values of [AI < 1 and J 2 .  

2.2. A =cosh O *  1 

For the description of the king-like regime one has to replace y by iO in the equations 
of the previous section. The thermodynamics of the Heisenberg model (J2 = 0 )  in this 

I 
A 

- I  I 2 3 
- 

Figure 1. Phase diagram of the Hamiltonian with competing Heisenberg exchange and 
three-spin interaction (6). The critical value 3. ofthe three-spin coupling versus anisotropy 
parameter A is shown. For IAI < 1 and J2 <.I, the system is in a gapless spin liquid phase 
with long-range antiferromagnetic correlations. The exponents qll and qr depend a n  P 
only. As 3, > 3, a second gapless magnon branch appears, leading to a finite momentum 
of thc ground state and correlations incommensurate with the lattice. For A >  I the system 
undergoes a phase transition from an antiferromagnetically ordered phase for &< J, to a 
phase with long-range correlations for J,  < .re. The latter are oscillating with a wavenumber 
incommensurate with the underlying lattice. 
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regime has been studied by Takahashi [l] for A =  1 and Gaudin [2] for A 3  1. Again 
the roots of the Bethe ansatz equations are arranged in strings (9): strings of any length 
n with positive panty are allowed. The ground state is a sea of I-strings with energy 
given by the following integral equation: 

A<*> 

E ( A )  = & ( O ) ( A ) -  e s A(*) s e (24) 

with 

The integration has to be performed over the interval where &(A) <0, the boundaries 
are fixed by ~(h(*)) =O. For sufficiently small J2 one has A(*) = *?r/B and the solution 
of (24) is found by Fourier transformation: 

(dn(xJk) is the Jacobian elliptic function of modulus k and K ( k ) ,  K ' ( k ) =  
K(k '  x (I?=&@) are the complete elliptic integrals of first kind). For small J2 the 
spectrum of magnon excitations has a gap. The critical value of J2 is defined by the 
vanishing of this gap, i.e. the appearance of I-strings with zero energy. After some 
algebra one finds from (26) 

71 1 
J,  = - 

sinhe ( I - k ' ) K ( k )  

which decreases monotonically from 2/ 
smoothly to the result (21) for A < 1 (figure 1). 

state has a non-zero momentum and aquires a finite magnetization. In the vicinity of 
the Fermi points massless excitations are possible. 

to $ as 0 goes from 0 to m, and hence connects 

Fe: 1, z J, the sea ef !-strings is on!;) parti.!!y f?!!ed. As 2 consequence the ground 

3. Critical exponents 

As mentioned above, the system described by the Hamiltonian (6) has massless 
excitations at zero temperature for J A J S  1 and forA > 1 ,  J2> J, .  Consequently, spin-spin 
correlation functions show power law behaviour rather than exponential decay in their 
asymptotics. In recent years, the possibility to compute finite-size corrections to the 
ground state energy and low-lying excited states in Bethe ansatz systems [15, 16, 91 
together with the progress achieved in the understanding of critical phenomena in 
(1  i I)-dimensional quantum systems due to the powerful tool of conformal invariance 
[17-191 have been used widely to compute the critical exponents associated with these 
power laws. 
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In this section these methods shall be used to study asmptotics of the spin-spin 
correlation functions in system (6). These correlation functions are sums of terms like 

cos Qx cos Qx (sx(x)syo))-- (s-( X)S+( 0)) - - 
lxlvll IXl?r 

with contributions at different wavenumbers Q. 
The critical behaviour in the region IAl< 1 and J2<  J, is well understood from 

studies of the Heisenberg model [20, 161. All the critical exponents can be given in 
terms of the ‘dressed charge’ Z = [(A:) with 5 being the solution of the following 
Bethe ansatz integral equation: 

b(A)  = 1 -I d p  T+(A-P)S(P) A y ’ + * W .  (29) 
Ai+] 

A>-’ 

Using Wiener-Hopf techniques Z can be obtained as 

and one finds the dominant terms in the long-distance asymptotic behaviour of the 
correlators (28) at wavenumber 71 with exponents q,, = 0 and qL = 1 / 8  with 0 = 2Z2 = 
? i / ( m - y )  independent of .I2. 

For IAI < 1, J2> J, there are two branches of massless magnon excitations. This 
situation is very similar to certain spin chains with S > f [9,10] and the one-dimensional 
Hubbard model [ l l ,  121. The energies and momenta of the low-lying excited states of 
a chain of finite length L are 

271 
9 - 9 --(A!+’- A‘-’+ + A?’ - A ? ) )  + TIAN+ + ZD+Q+ + 20-4- 

O -  L 

Here uy)(u?*)) are the Fermi velocities of right- and left-moving magnon excitations 
with positive (negative) parity and Q + =  71/2-  Q_=!2/2  are the Fermi momenta 
corresponding to the sea of positive (negative) parity magnons [8]. The critical 
dimensions A Y )  of the primary fields in the critical theory are [18, 121 

Z-+AN+-Z++AN- 
2 det Z 

Z++D++Z-_D_F 

determined by the elements of the dressed charge matrix 

and the integer numbers AN,, D , .  Note that the spin of the states (31) differs from 
the one of the ground state by AN++AN-.  The elements of the matrix Z are given 
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in terms of the solution of the following set of integral equations: 

In [SI only the diagonal terms in this set of coupled equations are considered. However, 
the magnon-magnon interaction leads to a mutual deformation of the energy bands 
for positive- and negative-parity excitations, which is reflected in the structure of (33). 

As for the integral equations determining the dressed energies E* above, the coupled 
equations (33) can be reduced to two scalar ones which can be studied using Wiener- 
Hopf techniques. 

For 0 < A < 1 one observes that AY+) = +m. Using this one finds the following result 
for the dressed charge matrix Z: 

.='( 0 ) 
a-1 " (34) 

Now the critical exponents in (28) can be determined (e.g. see [12]). The states in the 
spectrum (31) correspond to operators contributing to the long-distance asymptotics 
of the correlation functions (28). The quantum numbers A N +  and D, fix the spin and 
the momentum of the intermediate state. Hence at wavenumber Q = v ( N +  D-) + 
;Z(D+-D_) the exponents 7 are given as 

7 = 2(A:+'+ Ay-'+ A?'+ AL-)) (35) 
with A N + = - A N _ = N  for q = l - A N _ = N  for vL. Hence one finds at Q =  
7r( N + D-) + 2 ( D +  + D-): ' 

7r 

Y 
'111 = (D+ - D_)* + N~ +-D? 

(36 )  
7r Y 
Y 7r 

T J ~  = ( D, - D - ) ~  + N~ + - 02 + -, 
(In the expression for qll  at least one of the integers N and D, has to be non-zero.) 
As compared to the exponents found for J2 < J,  one observes an enhancement of the 
longitudinal and suppression of the in-plane correlations at wavenumber 7r while new 
contibutions appear at wavenumber 22. 

For -1  < A < O  the dressed charge matrix has the form 
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E can be determined in two limiting cases: for J 2 +  J,+O one obtains S = 1;  as J2+ m 
one finds A?-)+ -W. In this limit (38) is of Wiener-Hopf type, giving E = 1/a. For 
intermediate values of J 2 >  J,  the E-dependent elements of the dressed charge matrix 
vary between these limits, depending on both y and J2 through A?. Again, all the 
critical exponents in (28) are given as function of the elements of Z.  Introducing 
e=2E2 we find at wavenumber Q=?r(N+D_)+CI(D+-D_):  

m - Y  D:+-. N 2  n 
e n - y  n 

ql = O(D+-D_)2+-+-  

Again the longitudinal spin correlations with Q = v are strongly enhanced while the 
In-p!ane ones decay with z !arger exponen! qi when compared to the phase Jz  < IC, 

For A > 1 and J2 > J,  one branch of massless magnon excitations is present at  T = 0, 
the critical exponent q = 1/(2Z2) as in the first regime (la[< 1, J2<  JJ with Z = C(A'") 
and the dressed charge given by the following equation: 

A<*> 

C ( A ) = 1 -  d p  T(A-p)S(p ) .  (40) 
L - 1  

The correlators (28) are dominated by the terms at wavenumber n with ql = l / e  and 
at wavenumber 2 (twice the Fermi momentum of the magnons) with qll = 0 where 
0 = 22'. Note that from the considerations above ;< 8 < 1. 

A, Dircn&fig 

The phase diagram of a spin-! chain with XXZ Heisenberg exchange and a competing 
three-spin interaction (6) bas been studied in detail. The critical value of the three-spin 
coupling J2 has been computed as a function of the XXZ anisotropy A >  -1. The 
structure of the ground state in the various regions of the phase diagram together with 
results for the asymptotic behaviour of the spin correlation functions (28) allow for a 
rather complete picture of the properties of the system: 

(i) For J2< J,  the properties of the system (6) are essentially unchanged as com- 
pared to the XXZ Heisenberg model ( J 2 = O ) .  In particular, for lAl< 1 the critical 
exponents do not depend on the value of .I2. 

(ii) At J2 = J,  and A >  1 the system undergoes a phase transition from a massive 
phase showing Ntel order t o  a disordered phase with massless excitations. The ground 
siate carries a finire momenium and magnerizaiion and ihe spin correiaiions decay as 
a power law with exponents depending on both J2 and A. The leading contibution to 
(s'(x)S'(O)) beyond the constant term is found at a wavenumber CI < n. 

(iii) For J2>  J,  and 1A1< 1 the critical behaviour is characterized by the existence 
of two branches of massless magnon excitations. The ground state has magnetization 
4 = 0. The spin correlations are antiferromagnetic, incommensurate with the lattice. 
Lnngitcdine! corre!i?tlons Ere enhanced as c n m p m d  !D !he phase J z <  Jc .  

It should be noted that further integrable multispin interactions can be added to 
the Hamiltonian (6) by considering the higher conservation laws from the QISM [SI. 
However, new phases are not likely to be found this way. 
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In addition to the T=O properties that have been the focus of this paper the Bethe 
ansatz provides tools to study the thermodynamics of this system. This is completely 
analogous to the corresponding problem for the XXZ Heisenberg chain [l-31. 
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